Export data
The fifth and final data operation of this tutorial will consist in exporting our data back to a bucket.
🗺️ Overview
🗂️ Create a bucket and a folder
📄 Create your configuration files
Create the JSON file that configures the data pipeline operation
{ "$schema": "http://jsonschema.tailer.ai/schema/table-to-storage-veditor", "configuration_type": "table-to-storage", "configuration_id": "000099-tailer-demo-export_YOUR_NAME", "short_description": "Short description of the job", "environment": "DEV", "account": "000099", "version": "3", "activated": true, "archived": false, "start_date" : "2023, 2, 10", "schedule_interval" : "None", "dest_gcp_project_id": "my-gcp-project", "gcs_dest_bucket": "my-gcs-bucket", "gcs_dest_prefix": "output_YOUR_NAME", "print_header": true, "destination_format": "CSV", "field_delimiter": ",", "copy_table": true, "dest_gcp_project_id": "my-gcp-project", "dest_gbq_dataset": "my_dataset", "dest_gbq_table_suffix": "dag_execution_date", "tasks": [ { "task_id": "demo_export", "sql_file" : "my_SQL_file.sql", "output_filename" : "demo_export_YOUR_NAME_{{FD_DATE}}.csv", "dest_gbq_table": "demo_export_YOUR_NAME" } ] }
Create a SQL file
Create the JSON file that will trigger the workflow
▶️ Deploy the data operation
🖐️ Run your workflow manually
🗳️ Check the result in GCS
🚀 Further steps
Last updated